Gene Expression -Translation-

Replication DNA Transcription HTT RNA Translation Ø Protein

Comparison of a Bacterial Gene with a Eucaryotic Gene

A Comparison of Procaryotic and Eucaryotic mRNAs

Summary: From Gene to Protein

(B) **PROCARYOTES**

Table 6.6 Ribosome Structure

Property	Prokaryote	Eukaryote
Overall Size	70S	80S
Small subunit	30S	40S
No. of proteins	~21	~30
RNA size (No. of bases)	16S (1500)	18S (2300)
Large subunit	50S	60S
No. of proteins	~34	~50
RNA size (No of bases)	23S (2900)	28s (4200
	5S (120	5.8S (160)
		5S (120)

Shine-Dalgarno Sequences

Help align ribosomes on mRNA to properly start translation

Can base-pair with a sequence contained in the ribosomal RNA

Message for	Shine–Dalgarno Sequence
Ribosomal protein L10	SD sequence Start 5' AGGAGCAAAGCUAAUG 3' mRNA 1111 3' AUUCCUCCA 5' Complementary 3' end of 16S ribosomal RNA
E. coli Iac z	5' AGGAAACAGCU AUG 3' 1111 3' AUUCCUCCA 5'
λ phage Cro	5' UAAGGAGGUUGUAUG 3' 11111111 3' AULCCUCCA 5'

The Genetic Code

4ⁿ > 20, when n={3,4,5,...}

Triplet code (why?)

Non-overlapping, unpunctuated

Nearly universal

Codon = group of three consecutive nucleotides

Start codon (in green)

• AUG

Stop codons (in orange)

- UAA
- UAG
- UGA

Redundant (usually the 3rd letter)

TABLE 6.5	6.5 The genetic code as expressed by triplet base sequences of mRNA ^a						
Codon	Amino acid	Codon	Amino acid	Codon	Amino acid	Codon	Amino acid
UUU	Phenylalanine	UCU	Serine	UAU	Tyrosine	UGU	Cysteine
UUC	Phenylalanine	UCC	Serine	UAC	Tyrosine	UGC	Cysteine
UUA	Leucine	UCA	Serine	UAA	None (stop signal)	UGA	None (stop signal)
UUG	Leucine	UCG	Serine	UAG	None (stop signal)	UGG	Tryptophan
CUU	Leucine	CCU	Proline	CAU	Histidine	CGU	Arginine
CUC	Leucine	CCC	Proline	CAC	Histidine	CGC	Arginine
CUA	Leucine	CCA	Proline	CAA	Glutamine	CGA	Arginine
CUG	Leucine	CCG	Proline	CAG	Glutamine	CGG	Arginine
AUU	Isoleucine	ACU	Threonine	AAU	Asparagine	AGU	Serine
AUC	Isoleucine	ACC	Threonine	AAC	Asparagine	AGC	Serine
AUA	Isoleucine	ACA	Threonine	AAA	Lysine	AGA	Arginine
AUG (start) ^b	Methionine	ACG	Threonine	AAG	Lysine	AGG	Arginine
GUU	Valine	GCU	Alanine	GAU	Aspartic acid	GGU	Glycine
GUC	Valine	GCC	Alanine	GAC	Aspartic acid	GGC	Glycine
GUA	Valine	GCA	Alanine	GAA	Glutamic acid	GGA	Glycine
GUG	Valine	GCG	Alanine	GAG	Glutamic acid	GGG	Glycine

a The boxes of codons are colored according to the scheme: ionizable: acidic, ionizable: basic, ionizable basic, ionizable polar, and ionizable (Figure 2.12). The nucleotide on the left is at the 5'-end of the triplet.

b AUG encodes *N*-formylmethionine at the beginning of mRNAs of Bacteria.

Transfer RNAs (tRNAs)

Adaptor molecules that match amino acids to codons in mRNA.

Any cell contains different types of tRNA molecules sufficient to incorporate all 20 amino acids into protein.

Some tRNAs can recognise more than one codon.

About 80 nucleotides in length.

Structures of tRNAs

All tRNAs share a general common structure that includes:

• an anticodon triplet loop (pairs with mRNA codons)

an acceptor stem (to which the amino acid is attached)

Structures of tRNAs

Coupling of amino acids to tRNAs

1. The amino acid is accepted by the aminoacyltRNA synthetase enzyme and is adenylated

2. The proper tRNA is accepted by the enzyme and the amino acid residue is transferred to the 2' or 3' OH of the 3'-terminal residue of the RNA

All reactions occur on the synthetase enzyme.

The Two Steps of Decoding

The genetic code is translated by means of two adaptors that act one after another.

The Procaryotic Ribosome

Synthesises polypeptides under the direction of mRNA templates

Translation = decoding of the information written in RNA into the amino acid sequence of the protein

The Mechanism of Translation Initiation in Procaryotes

The Mechanism of Translation Elongation in Procaryotes (1)

E = exit site

P = peptidyl binding site

A = aminoacyl binding site

The Mechanism of Translation Elongation in Procaryotes (2)

Binding of a spesific amino acid tRNA to A site

The Mechanism of Translation Elongation in Procaryotes (3)

Peptide bond formation: chain transfer from peptidyl tRNA to aminoacyl tRNA

The Mechanism of Translation Elongation in Procaryotes (4)

Translocation of peptidyl tRNA from A site to P site. Ribosome moves one codon to the right, and the now uncharged tRNA moves from P site to E site.

The Mechanism of Translation Elongation in Procaryotes (5)

Ribosome is ready to start another cycle.

The cycles will continue until a termination codon is reached.

The Regulation of Protein Synthesis

When translation is regulated, it is generally done at the initiation state:

1. The tertiary structure of the mRNA can prevent its attachment to the ribosomal subunit

- 2. Proteins may bind to the mRNA, blocking initiation
- 3. Anti-sense RNA may block initiation

Figure 6.34

3 Different Reading Frames

Figure 6.35

Structure of Transfer RNA

Figure 6.36a

Aminoacyl-tRNA synthetase activity

Figure 6.37

The Mechanism of Translation Initiation in Procaryotes

Figure 6.38

Molecular Chaperone

Figure 6.40

TABLE 6.7	Variations in the genetic code ^a						
		Other codes in cellular chromosomes			Other mitochondrial codes		
Codon	Universal code	Mycoplasma	Paramecium	Euplotes	Yeast	Protozoa	Mammals
UGA UAA/UAG AUA CUA AGA/AGG	Stop Stop Isoleucine Leucine Arginine	Tryptophan Stop Isoleucine Leucine Arginine	Stop Glutamine Isoleucine Leucine Arginine	Cysteine Stop Isoleucine Leucine Arginine	Tryptophan Stop Methionine Threonine Arginine	Tryptophan Stop Methionine Leucine Arginine	Tryptophan Stop Methionine Leucine Stop

a The universal genetic code is used in the chromosomes of most cells, chloroplasts, plant mitochondria, and their viruses and plasmids. A few organisms use slightly different codes in their chromosomes (in the nucleus). The examples of these other nuclear codes are from *Mycoplasma* (Bacteria) and two different ciliated protozoa (Eukarya). All nonplant mitochondria use variations of the universal code, whereas plant mitochondria use the universal code. The examples here are only a few of the different types known.

Codon Usage

Organisms have preferred codons for each amino acid

 For a given organism, some codons are used very often, while others are used rarely
This codon preference is a unique trait of the organism

Codon preference can be used to determine whether a newly sequenced region actually encodes a gene

The Genetic Code

Three Conceivable Kinds of Genetic Codes

Structure of Procaryotic mRNAs

mRNA has also regions that do not encode for a protein

Shine-Dalgarno sequence (SD) = Ribosome Binding Site (RBS)

The first AUG after SD-sequence is interpreted as the start site of translation