TRANSLATION

By: Lucia Dhiantika Witasari

Translation

= decoding of the information written in RNA into the amino acid sequence of the protein

A Comparison of Procaryotic and Eucaryotic mRNAs

The Genetic Code

First letter of codon (5' end)								
	Second l of codon							
*	U		С		A			G
U	UUU	Phe Phe	UCC UCC	Ser Ser	UAU UAC	Tyr Tyr	UGU UGC	Cys Cys
U	UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop
	UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp
С	CUU	Leu Leu	CCC	Pro Pro	CAU CAC	His His	CGU CGC	Arg Arg
	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
Α	AUU	Ile	ACU	Thr	AAU	Asn	AGU	Ser
	AUC	Ile	ACC	Thr	AAC	Asn	AGC	Ser
Α	AUA	Ile	ACA	Thr	AAA	Lys	AGA	Arg
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg
G	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
ŭ	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly

TABLE 27-3 Degeneracy of the Genetic Code			
Amino acid	Number of codons	Amino acid	Number of codons
Met	1	Tyr	2
Trp	1	lle	3
Asn	2	Ala	4
Asp	2	Gly	4
Cys	2	Pro	4
GIn	2	Thr	4
Glu	2	Val	4
His	2	Arg	6
Lys	2	Leu	6
Phe	2	Ser	6

Reading frames in the genetic code

In a triplet, nonoverlapping code, all mRNAs have three potential reading frames

Transfer RNAs (tRNAs)

- Adaptor molecules that match amino acids to codons in mRNA.
- Any cell contains different types of tRNA molecules sufficient to incorporate all 20 amino acids into protein.
- Some tRNAs can recognise more than one codon.
- About 80 nucleotides in length.

Structure of tRNAs

All tRNAs share a general common structure that includes:

- an anticodon triplet loop (pairs with mRNA codons)
- an acceptor stem (to which the amino acid is attached)

THE WOBBLE HYPOTHESIS

- The first two bases of an mRNA codon always form strong Watson-Crick base pairs with the corresponding bases of the tRNA anticodon and confer most of the coding specificity.
- The first base of the anticodon (reading in the 5'→3' direction; this pairs with the third base of the codon) determines the number of codons recognized by the tRNA.
 - When the first base of the anticodon is C or A, base pairing is specific and only one codon is recognized by that tRNA.
 - When the first base is U or G, binding is less specific and two different codons may be read.
 - When inosine (I) is the first (wobble) nucleotide of an anticodon, three different codons can be recognized—the maximum number for any tRNA.
- When an amino acid is specified by several different codons, the codons that differ in either of the first two bases require different tRNAs
- A minimum of 32 tRNAs are required to translate all 61 codons (31 to encode the amino acids and 1 for initiation).

TABLE 27-4 How the Wobble Base of the Anticodon Determines the Number of Codons a tRNA Can Recognize

1. One codon recognized:

Two codons recognized:

Three codons recognized:

1 Anticodon (3')
$$X-Y-I$$
 (5')
Codon (5') $Y-X-\frac{1}{c}$ (3')

- Transfer RNAs base-pair with mRNA codons at a three-base sequence on the tRNA called the anticodon
- the anticodons in some tRNAs include the nucleotide inosinate
 (I), which contains the uncommon base hypoxanthine
- Inosinate can form hydrogen bonds with three different nucleotides (U, C, and A)

Some modified bases of tRNAs, produced in posttranscriptional reactions

Pseudouridine (y)

Dihydrouridine (D)

Ribothymidine (T)

N⁶-Isopentenyladenosine (i⁶A)

Ribosome Structure

Property	Prokaryote	Eukaryote
Overall Size	70S	80S
Small subunit	30S	40S
No. of proteins	~21	~30
RNA size (No. of bases)	16S (1500)	18S (2300)
Large subunit	50S	60S
No. of proteins	~34	~50
RNA size (No of bases)	23S (2900)	28s (4200
	5S (120	5.8S (160)
	,	5S (120)

Processing of pre-rRNA transcripts in bacteria

Processing of pre-rRNA transcripts in vertebrates

Processing of tRNAs in bacteria and eukaryotes

Coupling of amino acids to tRNAs

- 1. The amino acid is accepted by the aminoacyl-tRNA synthetase enzyme and is adenylated
- 2. The proper tRNA is accepted by the enzyme and the amino acid residue is transferred to the 2' or 3' OH of the 3'-terminal residue of the RNA

All reactions occur on the synthetase enzyme.

General structure of aminoacyl-tRNAs

The Two Steps of Decoding

Shine-Dalgarno Sequences

(named for Australian researchers John Shine and Lynn Dalgarno)

Help align ribosomes on mRNA to properly start translation

Can base-pair with a sequence contained in the ribosomal RNA

Message for	Shine–Dalgarno Sequence
Ribosomal protein L10	SD sequence Start 5' AGGAGCAAAGCUAAUG 3' mRNA 1
E. coli lac z	5' AGGAAACAGCU AUG 3' 3' AUUCCUCCA 5'
λ phage Cro	5' UA A GGAGGUUGU AUG 3' 111111111 3' AUUCCUCCA 5'

Structure of Procaryotic mRNAs

mRNA has also regions that do not encode for a protein

Shine-Dalgarno sequence (SD) = Ribosome Binding Site (RBS)

The first AUG after SD-sequence is interpreted as the start site of translation

Initiation in Procaryotes

Elongation in Procaryotes (1)

The E site is the site from which the "uncharged" tRNAs leave during elongation.

Elongation in Procaryotes (2)

Elongation in Procaryotes (3)

Peptide bond formation: chain transfer from peptidyl tRNA to aminoacyl tRNA

Elongation in Procaryotes (4)

Translocation of peptidyl tRNA from A site to P site. Ribosome moves one codon to the right, and the now uncharged tRNA moves from P site to E site.

Elongation in Procaryotes (5)

Ribosome is ready to start another cycle.

The cycles will continue until a termination codon is reached.

Termination in Procaryotes

Stage 1: The initiation of polypeptide synthesis

Step 1

- The 30S ribosomal subunit binds two initiation factors, IF-1 and IF-3. Factor IF-3 prevents the 30S and 50S subunits from combining prematurely. Factor IF-1 binds at the A site and prevents tRNA binding at this site during initiation
- The mRNA then binds to the 30S subunit.
- The initiating (5)AUG where fMet-tRNAfMet is to be bound is guided to its correct position by the **Shine- Dalgarno sequence.** The initiating (5)AUG is positioned at the P site, the only site to which fMettRNAfMet can bind.

Step 2

- the complex consisting of the 30S ribosomal subunit, IF-3, and mRNA is joined by both GTP-bound IF-2 and the initiating fMet-tRNAfMet.
- The anticodon of this tRNA now pairs correctly with the mRNA's initiation codon.

Step 3

- this large complex combines with the 50S ribosomal subunit; simultaneously, the GTP bound to IF-2 is hydrolyzed to GDP and Pi, which are released from the complex.
- All three initiation factors depart from the ribosome at this point.

Initiation in Eukaryotic Cells

The initiating (5)AUG is detected within the mRNA not by its proximity to a Shine-Dalgarno-like sequence but by a scanning process: a scan of the mRNA from the 5 end until the first AUG is encountered, signaling the beginning of the reading frame.

TABLE 27-8	Protein Factors Required for Initiation of Translation in Bacterial and Eukaryotic Cells
Factor	Function
Bacterial	
IF-1	Prevents premature binding of tRNAs to A site
IF-2	Facilitates binding of fMet-tRNA ^{fMet} to 30S ribosomal subunit
IF-3	Binds to 30S subunit; prevents premature association of 50S
	subunit; enhances specificity of P site for fMet-tRNA ^{fMet}
Eukaryotic [*]	
elF2	Facilitates binding of initiating Met-tRNA ^{Met} to 40S ribosomal subunit
elF2B, elF3	First factors to bind 40S subunit; facilitate subsequent steps
eIF4A	RNA helicase activity removes secondary structure in the mRNA to permit binding
	to 40S subunit; part of the eIF4F complex
eIF4B	Binds to mRNA; facilitates scanning of mRNA to locate the first AUG
eIF4E	Binds to the 5' cap of mRNA; part of the eIF4F complex
eIF4G	Binds to eIF4E and to poly(A) binding protein (PAB); part of the eIF4F complex
eIF5	Promotes dissociation of several other initiation factors from 40S subunit as a prelude to association of 60S subunit to form 80S initiation complex

Facilitates dissociation of inactive 80S ribosome into 40S and 60S subunits

eIF6

Initiation fMet) complex 50S 5'AUG 3' Initiation Next codon codon 30SIncoming aminoacyltRŇA GTP -GTP binding of incoming aminoacyltRNA GTP Tu Ts* GDP P_i Tu TsGDP

Elongation Step 1: Binding of an Incoming Aminoacyl-tRNA

elongation factors in bacteria: EF-Tu, EF-Ts, and EF-G

Elongation Step 2: Peptide Bond Formation

The peptidyl transferase catalyzing this reaction is the 23S rRNA ribozyme

to the P site.

• The tRNAs then shift to a hybrid binding state

Elongation Step 3: Translocation

the ribosome moves one codon toward the 3 end of the mRNA

The elongation cycle in eukaryotes

- The elongation cycle in eukaryotes is quite similar to that in prokaryotes.
- Three eukaryotic elongation factors (eEF1, eEF1, and eEF2) have functions analogous to those of the bacterial elongation factors (EF-Tu, EF-Ts, and EF-G, respectively).
- Eukaryotic ribosomes do not have an E site; uncharged tRNAs are expelled directly from the P site.

Stage 4: Termination of Polypeptide Synthesis Requires a Special Signal

- (1) hydrolysis of the terminal peptidyltRNA bond
- (2) release of the free polypeptide and the last tRNA, now uncharged, from the P site;
- (3) dissociation of the 70S ribosome into its 30S and 50S subunits, ready to start a new cycle of polypeptide synthesis

Terminator factors

- In bacteria → three termination factors, or release factors (RF-1, RF-2, and RF-3)
 - RF-1 recognizes the termination codons UAG and UAA
 - RF-2 recognizes UGA and UAA
 - RF-3 → release the ribosomal subunit
- In eukaryotes, a single release factor, eRF, recognizes all three termination codons.