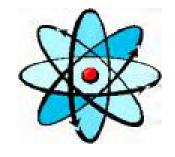
WATER

Lucia Dhiantika Witasari

Elements

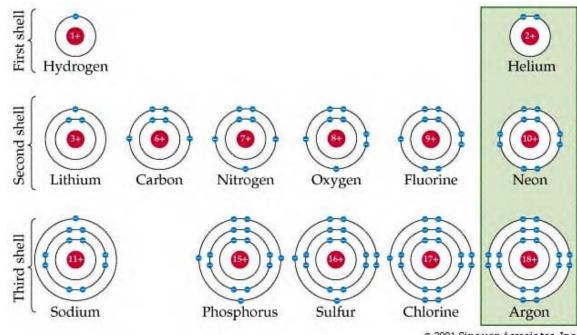
A. Chemical symbols: CHOPSN
C=carbon, H=hydrogen, O=oxygen, P=phosphorus, S=sulfur, N=nitrogen


B. Top 3

Earth's surface = O, Si, Al Living things: C, H, O

C. Atoms: smallest particle of element

- 1) protons (p+) = in nucleus; Atomic number; ID element
- 2) neutrons (n°) = in nucleus
- 3) electrons (e⁻) = orbit nucleus



Lithium atom

^{*}Neutral atoms: #p+ = #e-

Electrons

- 1) Travel in energy shell or levels
- 2) Valence e-: outer level; affects reactivity

@ 2001 Sinauer Associates, Inc.

3) Maximum/level: $2 = 1^{st}$

 $8 = 2^{\text{nd}}$

 $18 = 3^{rd}$

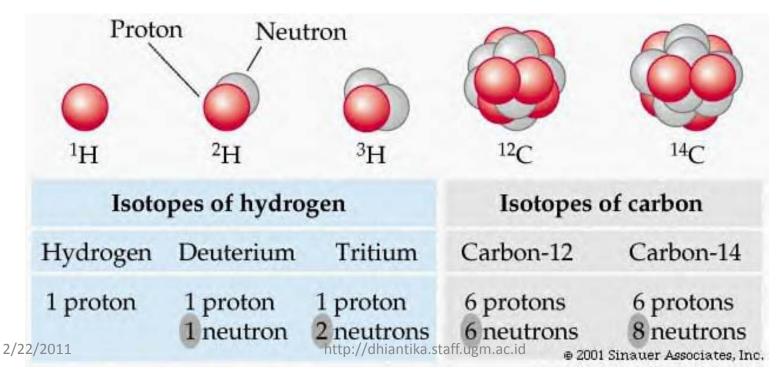
4) Ions: atom lost or gained an e

H atom (1p,0n,1e): loses 1e \rightarrow H⁺ ion

2/22/2011 Cl atom gains 1e \rightarrow tp Clīniion staff.ugm.ac.id

1 H 1.0079 3 Li 6.941	4 Be 9.012	/		cal sy		1						5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	2 He 4.003 10 Ne 20.179
11	Mg (average of all isotopes)								13	14	15	16	17	18			
Na									Al	Si	P	S	CI	Ar			
22.990									26.982	28.086	30,974	32.06	35,453	39,948			
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65,38	69.72	72.59	74.922	78.96	79.909	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4778	87.62	88.906	91.22	92.906	95.94	(99)	101.07	102.906	106.4	107.870	112.41	114.82	118.69	121.75	127.60	126.904	131.30
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.34	174.97	178.49	180,948	183.85	186.207	190.2	192-2	195.08	196.967	200.59	204.37	207.19	208,980	(209)	(210)	(222)
87 Fr (223)	88 Ra 226.025	103 Lr (260)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 (269)	(272)	112 (277)	113	114 (285)	115 (289)	116	117	118 (293)

Lanthanide series


Actinide series

57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb
138.906	140.12	140.9077	144.24	10.140	150.36	151.96	157.25	158.924	162.50	164.930	167.26	168.934	173.04
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac 227.028	Th 232.038	Pa 231.0359	238.02	Np 237.0482	Pu (244)	Am (243)	(247)	Bk (247)	Cf (251)	Es (252)	Fm (257)	Md (258)	No (259)

2/22/2011

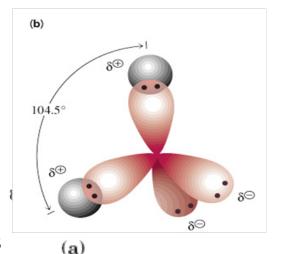
Isotopes: atoms of same element that differ by # of neutrons

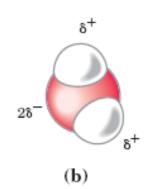
ex: C-12 and
14
C 12 C 12 C 14 C 14

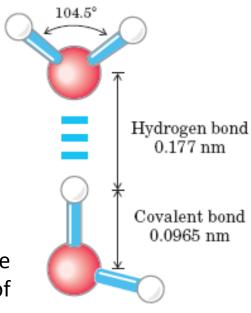
WATER

- Water plays a central role in the chemistry of all life
- Proteins, polysaccharides, nucleic acids and membranes all assume their characteristic shapes in response to water
- The chemical properties of water are related to the functions of biomolecules, entire cells, and organisms

Structure of the water molecule

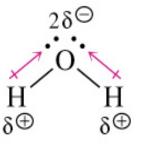

Properties of Water:


Water is a polar molecule


The sharing of electrons between H and O is unequal → two electric dipoles

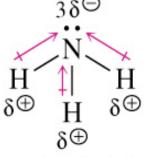
Water is highly cohesive

Water molecules interact strongly with one another through hydrogen bonds


(c)

a **hydrogen bond** = an electrostatic attraction between the oxygen atom of one water molecule and the hydrogen of another another and the hydrogen of

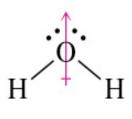
Polarity of Small Molecules


Water and ammonia each have a permanent dipole while CO₂ does not

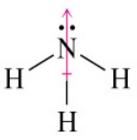
(a)

Bond polarities

(b)



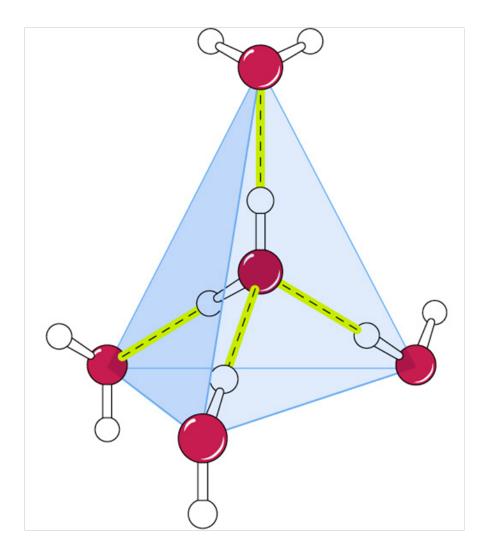
Bond polarities

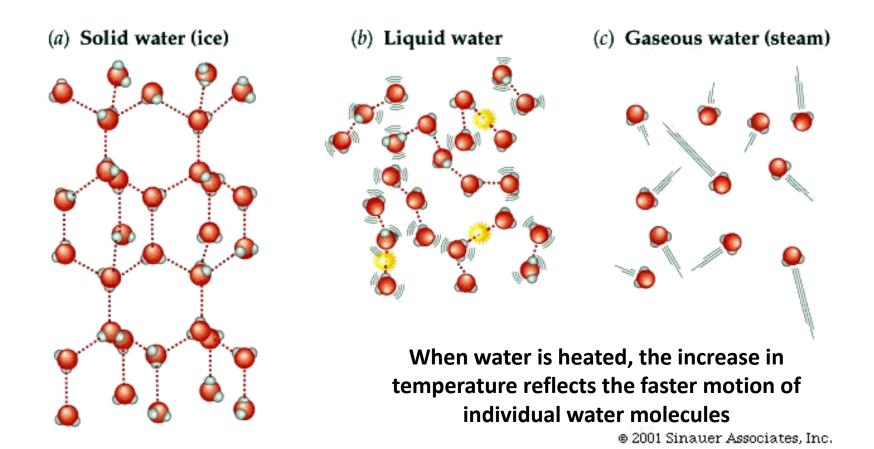

(c)

$$O = C = O$$

Bond polarities

Net dipole

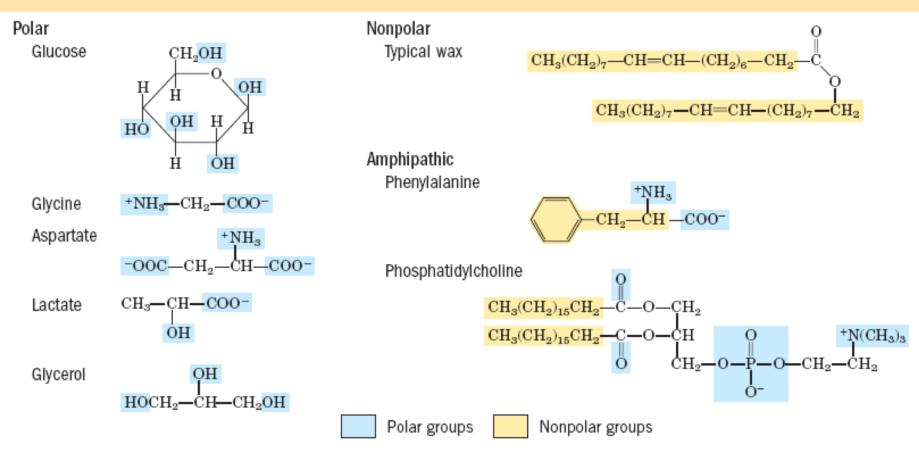

Net dipole


$$o = c = o$$

No net dipole

Hydrogen bonding by a water molecule

- A water molecule can form up to four hydrogen bonds
- Hydrogen bonds shown in yellow



The lifetime of each hydrogen bond in liquid water is just 1 to 20 picoseconds (1ps = 10_{-12} s); upon breakage of one hydrogen bond, another hydrogen bond forms, within 0.1 ps.

Biomolecules

TABLE 2-2 Some Examples of Polar, Nonpolar, and Amphipathic Biomolecules (Shown as Ionic Forms at pH 7)

Ionic and Polar Substances Dissolve in Water

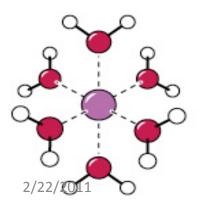
- Hydrophilic (water-loving) substances [polar and ionic (electrolytes)] readily dissolve in H₂O
- Polar water molecules align themselves around ions or other polar molecules
- A molecule or ion surrounded by solvent, molecules is solvated
- When the solvent is water, the molecules or ions are hydrated

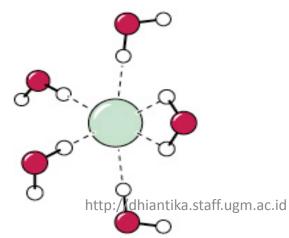
Water readily dissolves such compounds by: replacing solute-solute hydrogen bonds with solute-water hydrogen bonds

Solubilities of molecules in water

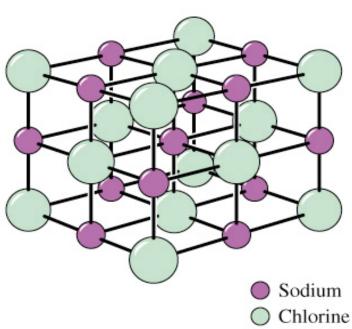
- Solubility in water depends upon the <u>ratio</u> of <u>polar to nonpolar groups</u> in a molecule
- The larger the portion of nonpolar groups the less soluble the molecule is in water
- The larger the portion of polar groups (e.g. hydroxyl groups (-OH)) the more soluble the molecule is in water.

TABLE 2.1 Solubilities of short-chain alcohols in water


		Solubility in water
Alcohol	(me Structure	ol/100 g 20°C) ^a H ₂ O at
Methanol	СН3ОН	
Ethanol	$\mathrm{CH_{3}CH_{2}OH}$	`
Propanol	$\text{CH}_3(\text{CH}_2)_2\text{OH}$	`
Butanol	$\text{CH}_3(\text{CH}_2)_3\text{OH}$	0.11
Pentanol	$\text{CH}_3(\text{CH}_2)_4\text{OH}$	0.030
Hexanol	$\text{CH}_3(\text{CH}_2)_5\text{OH}$	0.0058
Heptanol	$\mathrm{CH_{3}(CH_{2})_{6}OH}$	0.0008

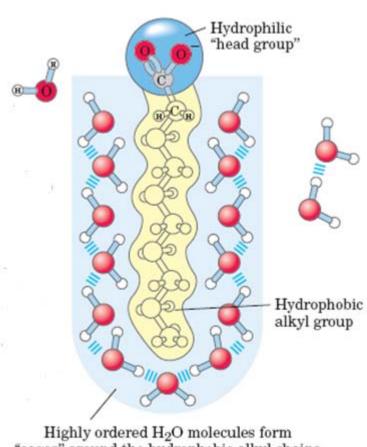

^aInfinity (`) indicates that there is no limit to the solubility of the alcohol in water.

Dissolution of NaCl in water


- (a) Electrostatic forces hold ions together in crystalline sodium
- (b) Water molecules form solvation spheres around Na⁺ and Cl⁻

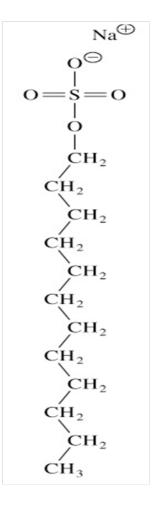
(b)

(a) NaCl crystal


Nonpolar Substances Are Insoluble in Water

- Hydrophobic (water-fearing) molecules are nonpolar. Ex: lipids and waxes.
- Hydrophobic effect the exclusion of nonpolar substances by water (critical for protein folding and self-assembly of biological membranes)
- Amphipathic molecules have hydrophobic chains and ionic or polar ends.
- Biomolecules are amphipathic; proteins, pigments, certain vitamins, and the sterols and phospholipids of membranes all have polar and nonpolar surface regions.

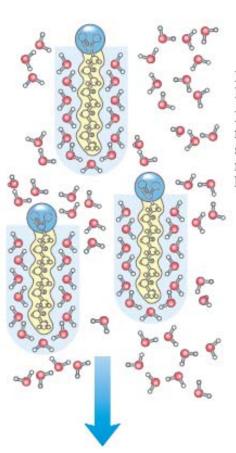
Nonpolar Gases Are Poorly Soluble in Water


TABLE 2-3 Sol	ubilities of Some Gases in	n Water	
Gas	Structure*	Polarity	Solubility in water (g/L) [†]
Nitrogen	N≡N	Nonpolar	0.018 (40 °C)
Oxygen	0=0	Nonpolar	0.035 (50 °C)
Carbon dioxide	$\stackrel{\delta^-}{\overset{\delta^-}{\bigcirc}}\stackrel{\delta^-}{{\bigcirc}}$	Nonpolar	0.97 (45 °C)
Ammonia	H H H 8-	Polar	900 (10 °C)
Hydrogen sulfide	H H 8-	Polar	1,860 (40°C)

Amphipathic molecules

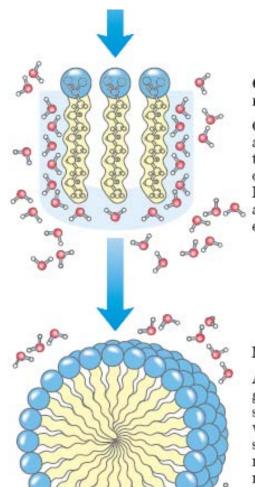
"cages" around the hydrophobic alkyl chains

Longchain fatty acids have very 2/2hydrophobic alkyl chains



Sodium dodecyl sulfate (SDS), 12 carbon tail and polar sulfate group

Micelles


→ stable structures of amphipathic compounds in water

http://dhiantika.staff.ug.ac.ic

Dispersion of lipids in H₂O

Each lipid molecule forces surrounding H₂O molecules to become highly ordered.

Clusters of lipid molecules

Only lipid portions at the edge of the cluster force the ordering of water. Fewer H₂O molecules are ordered, and entropy is increased.

Micelles

All hydrophobic groups are sequestered from water; ordered shell of H₂O molecules is minimized, and entropy is further increased.

2/22/2011

Water Is Nucleophilic

- Nucleophiles electron-rich atoms or groups
- Electrophiles electron-deficient atoms or groups
- Water is a relatively <u>weak nucleophile</u>
- Due to its <u>high cellular concentration</u>, hydrolysis reactions in water are thermodynamically favored

Hydrolysis of a peptide

Noncovalent forces

Non-covalent interaction in biomolecules

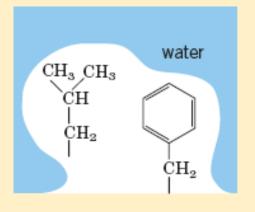
- 1. The folding of a single polypeptide or polynucleotide chain into its three-dimensional shape
- 2. The binding of an antigen to a specific antibody
- 3. The binding of a hormone or a neurotransmitter to its cellular receptor protein

TABLE 2-5 Four Types of Noncovalent ("Weak") Interactions among Biomolecules in Aqueous Solvent

Hydrogen bonds Between neutral groups

Between peptide bonds

Ionic interactions


Attraction

-+NH₃ →← -O—C—

Repulsion

$$-$$
+NH₃ \longleftrightarrow H₃N+ $-$

Hydrophobic interactions

van der Waals interactions

Any two atoms in close proximity

A. Charge-Charge Interactions (Ion Pairing)

- Electrostatic interactions between two charged particles
- Can be the strongest type of noncovalent forces
- Can extend over greater distances than other forces
- Charge repulsion occurs between similarly charged groups

Types of attractive charged interactions:

- Salt bridges attractions between oppositely-charged functional groups in proteins
- Ion pairing a salt bridge buried in the hydrophobic interior of a protein is stronger than one on the surface

B. Hydrogen Bonds

- Among the strongest of noncovalent interactions
- H atom bonded to N, O, S can hydrogen bond to another electronegative atom (~0.2 nm distance)
- Total distance between the two electronegative atoms is ~0.27 to 0.30 nm
- In aqueous solution, water can H-bond to exposed functional groups on biological molecules

Hydrogen Bonds

Between complementary bases of DNA

Between the hydroxyl group of an alcohol and water

Between the carbonyl group of a ketone and water

Between peptide groups in polypeptides

$$\begin{array}{c|c}
H & R \\
C & H
\end{array}$$

$$\begin{array}{c|c}
H & C \\
H & C
\end{array}$$

$$\begin{array}{c|c}
H & N \\
C & H
\end{array}$$

$$\begin{array}{c|c}
H & N \\
C & H
\end{array}$$

Adenine

Thymine

C. Van der Waals Forces

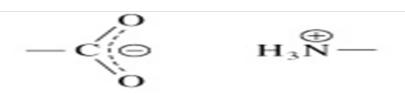
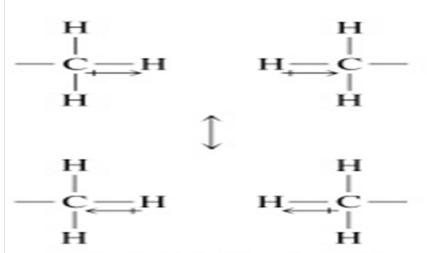

- Weak short range forces between:
 - (a) Permanent dipoles of two uncharged molecules
 - (b) Permanent dipole and an induced dipole in a neighboring molecule
- Although individually weak, many van der Waals interactions occur in biological macromolecules and participate in stabilizing molecular structures

TABLE 2.2	Van	der	Waals	radii	of
several ato	ms				

Atom	Radius (nm)
Hydrogen	0.12
Oxygen	0.14
Nitrogen	0.15
Carbon	0.17
Sulfur	0.18
ff.u@phaccidhoruc	0.19

D. Hydrophobic Interactions


- Association of a relatively <u>nonpolar molecule</u> or group with other nonpolar molecules
- Depends upon the <u>increased entropy</u> (+DS) which occurs when water molecules surrounding a nonpolar molecule are freed to interact with each other in solution
- The cumulative effects of many hydrophobic interactions can have a significant effect on the stability of a macromolecule

Charge-charge interaction ~40 to 200 kJ mol⁻¹

$$c = 0 - H - N$$

Hydrogen bond ~2 to 20 kJ mol⁻¹

van der Waals interaction ~0.4 to 4 kJ mol⁻¹

http://dhiantika.staff.ugm.ac.id

Ionization of Water, Weak Acids, and Weak Bases

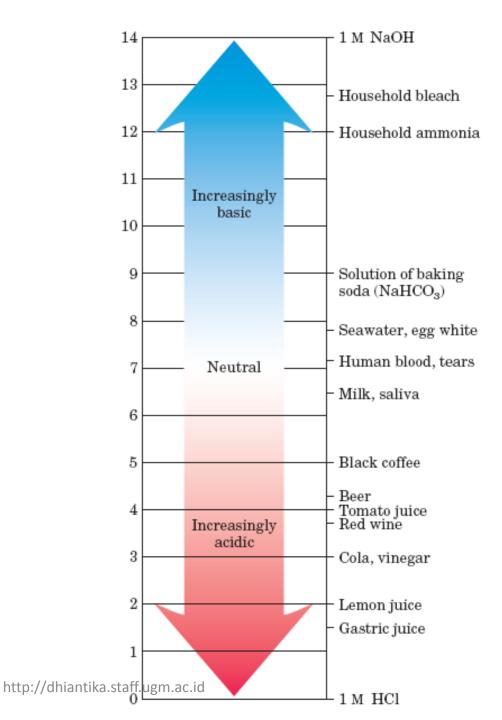
Ionization of Water

- Pure water consists of a low concentration of hydronium ions
 (H₃O+) and an equal concentration of hydroxide ions (OH-)
- Acids are proton donors (e.g. H₃O⁺) and bases are proton acceptors (e.g. OH⁻)
- The ionization of water can be measured by its electrical conductivity; pure water carries electrical current as H migrates toward the cathode and OH toward the anode.

$$H_2O + H_2O \longleftrightarrow H_3O^{\bigoplus} + OH^{\bigcirc}$$

The pH Scale

- pH is defined as the negative logarithm of the concentration of [H⁺]
- basis for the pH scale → The ion product of water (Kw)
- It is a convenient means of designating the concentration of H (and thus of OH) in any aqueous solution in the range between 1.0 M H⁺ and 1.0 M OH-.


$$pH = -\log[H^{\oplus}] = \log\frac{1}{[H^{\oplus}]}$$

	-6 The pH Scale		
[H ⁺] (м)	рН	[OH ⁻] (м)	рОН*
10 ⁰ (1)	0	10^{-14}	14
10^{-1}	1	10^{-13}	13
10^{-2}	2	10^{-12}	12
10^{-3}	3	10^{-11}	11
10^{-4}	4	10^{-10}	10
10^{-5}	5	10 ⁻⁹	9
10^{-6}	6	10^{-8}	8
10 ⁻⁷	7	10^{-7}	7
10^{-8}	8	10^{-6}	6
10 ⁻⁹	9	10 ⁻⁵	5
10^{-10}	10	10^{-4}	4
10^{-11}	11	10^{-3}	3
10^{-12}	12	10^{-2}	2
10^{-13}	13	10^{-1}	1
10^{-14}	14	10 ⁰ (1)	0

^{*}The expression pOH is sometimes used to describe the basicity, or OH $^-$ concentration, of a solution; pOH is defined by the expression pOH = $-\log [OH^-]$, which is analogous to the expression for pH. Note that ip: $\Delta H = -\log [OH]$. $\approx .1814$.

pH values for some fluids

- Lower values are acidic fluids
- Higher values are basic fluids

The pH affects the structure and activity of biological macromolecules

- the catalytic activity of enzymes is strongly dependent on pH
- Measurements of the pH of blood and urine are commonly used in medical diagnoses.
- The pH of the blood plasma of people uncontrolled diabetes → below the normal value of 7.4 → acidosis.
- disease states the pH of the blood is higher than normal ->
 alkalosis

Strong Acids and Bases vs Weak Acids and Bases

Strong acids (such as: Hydrochloric, sulfuric, and nitric acids) and strong bases (such as: NaOH and KOH) dissociate completely in water:

$$HCI + H_2O \rightarrow CI^- + H_3O^+$$

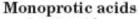
Note:

Cl⁻ is the conjugate base of HCl

H₃O⁺ is the **conjugate acid** of H₂O

Weak acids and bases ???

- Weak acids and bases → not completely ionized when dissolved in water
- These are common in biological systems and play important roles in the metabolism and its regulation.


Acetic acid is a weak acid

- Acids → proton donors
- Bases → proton acceptors
- A proton donor and its corresponding proton acceptor make up a conjugate acid-base pair

CH₃COOH
$$\stackrel{K_a}{\longrightarrow}$$
 H ^{\oplus} + CH₃COO ^{\ominus}
Acetic acid Acetate anion (weak acid) (conjugate base)

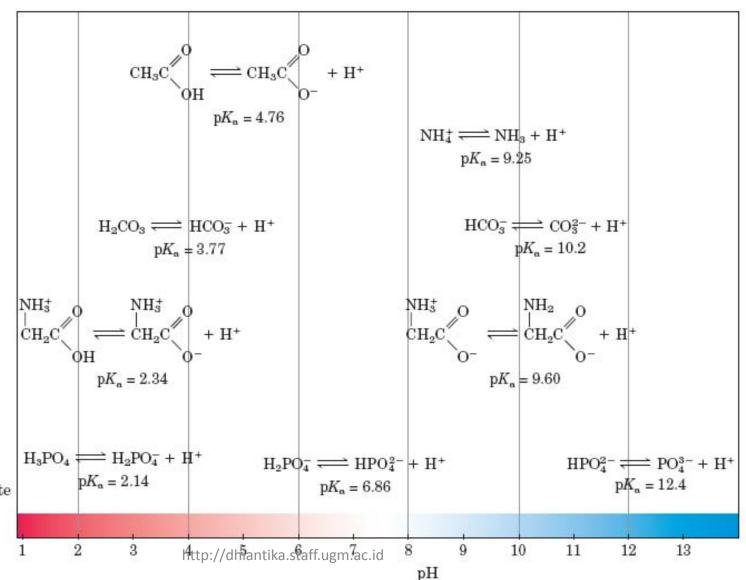
Ka → **dissociation constants** → Equilibrium constants for ionization reactions

Conjugate acid-base pairs

Acetic acid $(K_a = 1.74 \times 10^{-5} \text{ m})$

Ammonium ion $(K_a = 5.62 \times 10^{-10} \text{ M})$

Diprotic acids


Carbonic acid $(K_a = 1.70 \times 10^{-4} \text{ M});$ Bicarbonate $(K_a = 6.31 \times 10^{-11} \text{ M})$

Glycine, carboxyl $(K_a = 4.57 \times 10^{-3} \text{ m})$; Glycine, amino $(K_a = 2.51 \times 10^{-10} \text{ m})$

Triprotic acids

Phosphoric acid $(K_a = 7.25 \times 10^{-3} \text{ m})$; Dihydrogen phosphate $(K_a = 1.38 \times 10^{-7} \text{ m})$; Monohydrogen phosphate $(K_a = 3.98 \times 10^{-13} \text{ m})$

2/22/2011

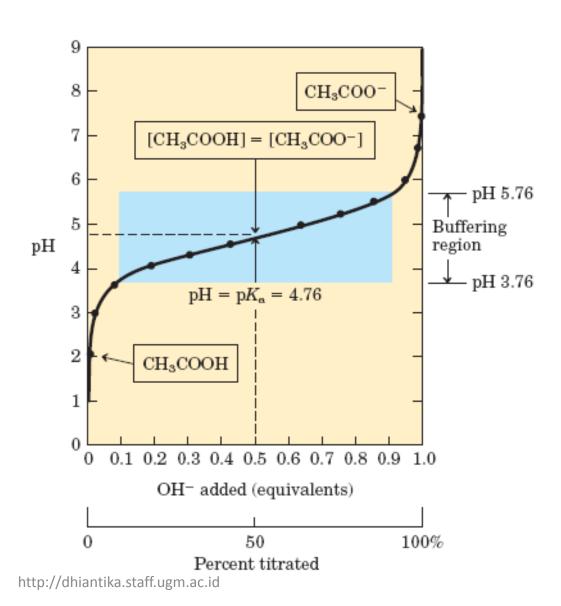
TABLE 2.4 Dissociation constants and p K_a values of weak acids in aqueous solutions at 25° C

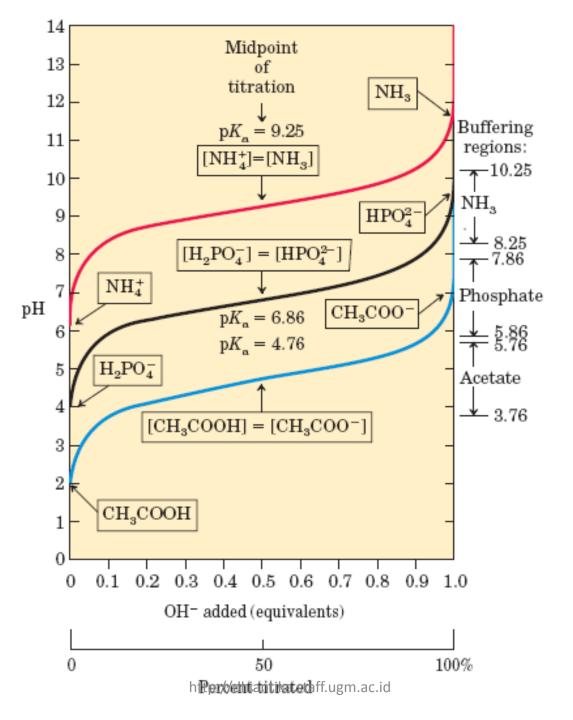
Acid	$K_{\rm a}\left({ m M}\right)$	pK_a
HCOOH (Formic acid)	1.77×10^{-4}	3.8
CH ₃ COOH (Acetic acid)	1.76×10^{-5}	4.8
CH ₃ CHOHCOOH (Lactic acid)	1.37×10^{-4}	3.9
H ₃ PO ₄ (Phosphoric acid)	7.52×10^{-3}	2.2
H ₂ PO ₄ [©] (Dihydrogen phosphate ion)	6.23×10^{-8}	7.2
HPO ₄ (Monohydrogen phosphate ion)	2.20×10^{-13}	12.7
H ₂ CO ₃ (Carbonic acid)	4.30×10^{-7}	6.4
HCO ₃ [©] (Bicarbonate ion)	5.61×10^{-11}	10.2
NH₄⊕(Ammonium ion)	5.62×10^{-10}	9.2
CH ₃ NH ₃ ⊕(Methylammonium ion)	2.70×10^{-11}	10.7

The Henderson-Hasselbalch Equation

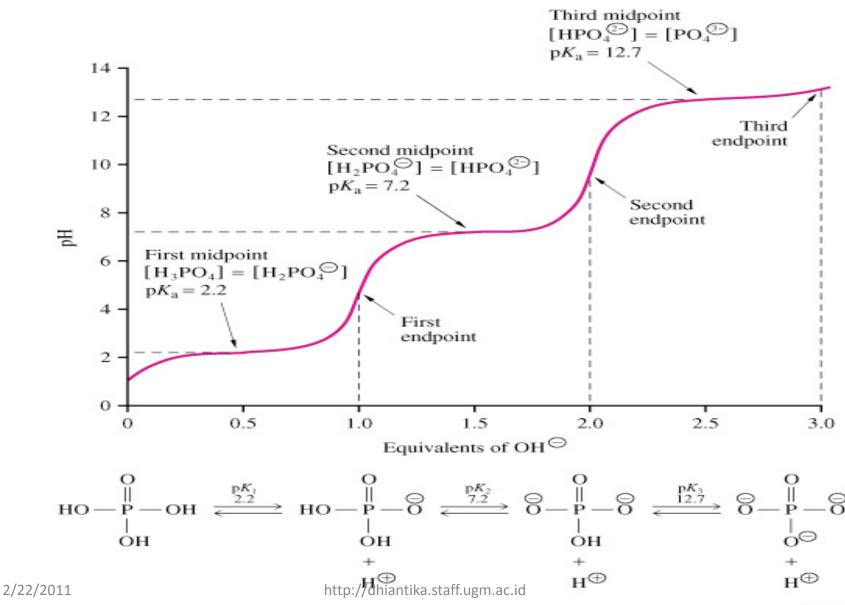
Defines the pH of a solution in terms of:

$$HA \Longrightarrow H^+ + A^-$$


- (1) The pK_a of the weak acid
- (2) Concentrations of the weak acid (HA) and conjugate base (A⁻)


$$K_{\text{eq}} = \frac{[H^+][A^-]}{[HA]} = K_{\text{a}}$$

$$pH = pK_a + log \frac{[A^{\bigcirc}]}{[HA]}$$


Titration curve of acetic acid (CH₃COOH)

- Titration is used to determine the amount of an acid in a given solution
- A measured volume of the acid is titrated with a solution of a strong base, usually sodium hydroxide (NaOH), of known concentration.
- Titration curves are used to determine pK_a values

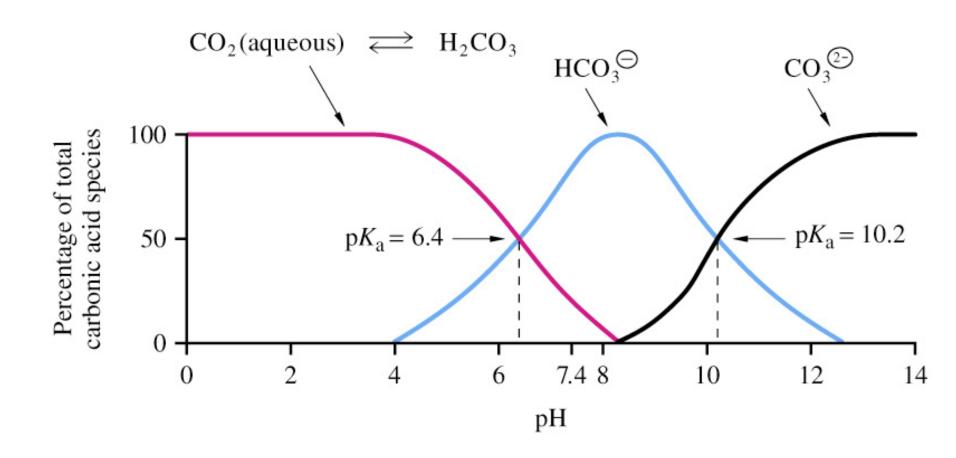
Titration curve for phosphoric acid (H₃PO₄)

Buffered Solutions Resist Changes in pH

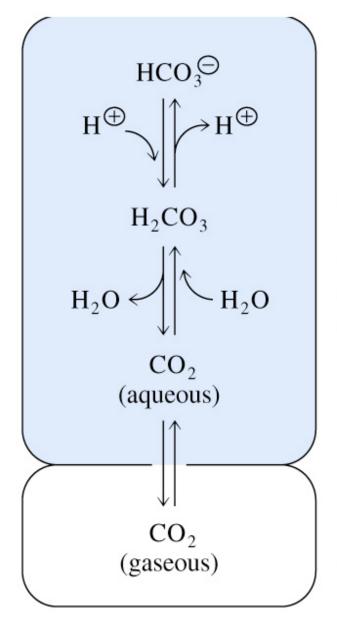
- Buffer capacity is the ability of a solution to resist changes in pH
- Most effective buffering occurs where:

solution pH = buffer
$$pK_a$$

- At this point: [weak acid] = [conjugate base]
- Effective <u>buffering range</u> is usually at pH values equal to the pKa ± 1 pH unit


Carbonate buffering equilibria

$$H_2CO_3 \iff H^{\oplus} + HCO_3^{\ominus}$$


$$CO_2$$
(aqueous) + $H_2O \rightleftharpoons H_2CO_3$

$$CO_2$$
(gaseous) \rightleftharpoons CO_2 (aqueous)

Percentages of carbonic acid and its conjugate bases as a function of pH

Regulation of the pH of blood in mammals

Aqueous phase of blood cells passing through capillaries in lung

Air space in lung